# **PROJECT FILE: NIEUWPOORT**

PERFORMANCE OF MAINTENANCE DREDGING WORKS IN THE NIEUWPOORT COASTAL MARINA







## Document control

### **Document information**

| Company name          | Jan De Nul - JDN                                                           |                                          |             |  |  |  |
|-----------------------|----------------------------------------------------------------------------|------------------------------------------|-------------|--|--|--|
| Document template     | Report                                                                     | Report                                   |             |  |  |  |
| Document number       | JDN0113.CO2PL.2.0 project dossierH2.202                                    | JDN0113.CO2PL.2.0 project dossierH2.2023 |             |  |  |  |
| Language              | Dutch - nl                                                                 |                                          |             |  |  |  |
| Document revision     | 00                                                                         | Complete revision                        | $\boxtimes$ |  |  |  |
| Document title        | Project file: Nieuwpoort                                                   |                                          |             |  |  |  |
| Document subtitle     | Performance of maintenance dredging works in the Nieuwpoort coastal marina |                                          |             |  |  |  |
| Project code          | 0113 - Nieuwpoort                                                          |                                          |             |  |  |  |
| Initiating department | QHSSE department                                                           |                                          |             |  |  |  |
| Author                | Ruben Duyver                                                               |                                          |             |  |  |  |

### **Revision history**

| Revision | Date        | Description and location of changes |
|----------|-------------|-------------------------------------|
| 00       | 06-May-2024 | Layout file 2023 (H2)               |

### **Review and approval**

| Endorsed for application within Jan De Nul Group by | Date        |
|-----------------------------------------------------|-------------|
| Bart Praet                                          | 08-Aug-2024 |
| Deference decumente                                 |             |

#### **Reference documents**

| Reference                | Title                |  |
|--------------------------|----------------------|--|
| JDN controlled documents |                      |  |
|                          | CO2-PL Certificate   |  |
| Standards                |                      |  |
| CO2 Performance ladder   | Handbook version 3.1 |  |
| ISO 14064                |                      |  |



## Table of contents

| 1 | Intro | oduction            |                                                           | 3  |
|---|-------|---------------------|-----------------------------------------------------------|----|
|   | 1.1   | Project             | details                                                   | 3  |
|   | 1.2   | Parties             | involved                                                  | 4  |
| 2 | Insig | ht                  |                                                           | 4  |
|   | 2.1   | Equipm              | ent deployed and deployment periods                       | 4  |
|   | 2.2   | Identifie           | cation of energy and emission flows                       | 4  |
|   | 2.3   | CO <sub>2</sub> foo | tprint and trends                                         | 5  |
|   |       | 2.3.1               | Reference CO <sub>2</sub> footprint                       | 5  |
|   |       | 2.3.2               | Actual project CO <sub>2</sub> footprint                  | 6  |
|   |       | 2.3.3               | Comparison of the emission profile organisation – project | 6  |
| 3 | Redu  | uction              |                                                           | 7  |
|   | 3.1   | List of r           | eduction measured for this project                        | 7  |
|   | 3.2   | Specific            | measures implemented                                      | 8  |
|   | 3.3   | Other n             | neasures only applicable to this specific project         | 8  |
| 4 | Tran  | sparenc             | у                                                         | 10 |
|   | 4.1   | Interna             | I                                                         | 10 |
|   | 4.2   | Externa             | l l                                                       | 10 |

This document is strictly confidential and proprietary to Jan De Nul Group. Unauthorized copying, distributing or divulging its contents is a violation of the company's policy and property rights.



## 1 Introduction

The Nieuwpoort Coastal marina consists of the river Ijzer ('fairway') that flows into the North Sea and along which 3 marinas are located.

The Client regularly sounds the area and indicates where dredging is required.

In the marinas and in locations in the river that are difficult to access, this is done with a small cutter suction dredger, and the dredged sediments are pumped to larger seagoing split barges in the fairway via a floating pipe. When these barges are full, they sail approx. 12km (7.5 mile) into sea to spread out the dredged sediments in a designated area.

In other locations in the fairway, a trailing suction hopper dredger can be used.

The contract is divided into 'lease years', running from 16<sup>th</sup> September until 15<sup>th</sup> June of the next year. Within each lease year, a dredging campaign is carried out.

This reporting period covers the first month of the fifth lease year, started on 1<sup>st</sup> September 2023.

| Report      |    | H2 2019 | H1 2020 | $\ge$ | H1 2021 | H2 2021 | H1 2022 |    |
|-------------|----|---------|---------|-------|---------|---------|---------|----|
| Lease year  |    | Lease   | year 1  | Lease | year 2  | Lease   | year 3  |    |
| Calendar yr | 20 | 19      | 20      | 20    | 20      | 21      | 20      | 23 |

| Report      |    | H2 2022 | H1 2023 | H2 2023 |        |       |        |    |
|-------------|----|---------|---------|---------|--------|-------|--------|----|
| Lease year  |    | Lease   | year 4  | Lease   | year 5 | Lease | year 6 |    |
| Calendar yr | 20 | 22      | 20      | 23      | 20     | 24    | 20     | 25 |

## 1.1 Project details

#### ID data

| Description           | Performance of maintenance dredging works in the 3 marinas and fairway at Nieuwpoort, aimed at bringing the river bed depths to the target depths. |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Specification N°      | 16EH/18/15 (Llot 1)                                                                                                                                |
| Client                | Agentschap Maritieme Dienstverdeling & Kust                                                                                                        |
| Award date            | 22 January 2019 (Start of works November 2019)                                                                                                     |
| Implementation period | 3 lease years, extended by 3 lease years.                                                                                                          |



## 1.2 Parties involved

Jan de Nul NV is main contractor for this project and responsible for:

- Deploying the Cutter Suction Dredger ('CSD'), seagoing Split Hopper Barges ('SHB'), support vessels and
- Loading pontoons ('FLAP');
- Deploying of Trailing Suction Hopper Dredger ('TSHD');
- Project management and day-to-day management.

This year, a subcontractor was employed to supply the 'SHB': Detlef Hegemann and Faasse Dredging (SHB/TSHD)

## 2 Insight

## 2.1 Equipment deployed and deployment periods

| Vessel         | Deployment period          |
|----------------|----------------------------|
| CSD            | December 2023 – April 2023 |
| SHB            | Januari 2024 – April 2024  |
| SHB/TSHD       | December 2023 – May 2024   |
| Support vessel | December 2023 – April 2024 |

### 2.2 Identification of energy and emission flows

List of material energy/emission flows

| Scope 1 (Fuel consumption)                       |
|--------------------------------------------------|
| Fuel consumption of seagoing split hopper barges |
| Fuel consumption of TSHD's                       |
| Fuel consumption of of CSD                       |
| Fuel consumption of support tug                  |

#### Scope 2 (Electricity consumption, heating)

Electricity consumption of the site shack



List of excluded energy/emission flows

| Energy flow                           | Reason                                           |
|---------------------------------------|--------------------------------------------------|
| Electricity consumption in supporting | Is monitored at corporate level and included in  |
| department (e.g. offices in Aalst)    | the communal parts                               |
| Natural gas                           | No natural gas consumed for this project for the |
| 11414141 840                          | reporting period.                                |
| Natural gas consumed in supporting    | Is monitored at corporate level and included in  |
| department (e.g. offices in Aalst)    | the communal parts                               |
| Air Miles Crew                        | Is monitored at corporate level                  |
| Air Miles Staff                       | Is monitored at corporate level                  |

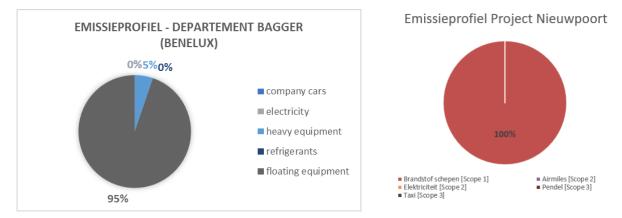
## 2.3 CO<sub>2</sub> footprint and trends

#### 2.3.1 Reference CO<sub>2</sub> footprint

On the basis of calculation at tendering, a reference  $CO_2$  footprint was established. Since this project concerns maintenance dredging works with variable deployment times, this reference  $CO_2$  footprint is only valid for the current campaign year (year 5). It was calculated on the basis of the equipment deployment period.



The total reference CO<sub>2</sub> emissions for campaign year 5 until the end of 2023 is: **280 tonnes CO<sub>2e</sub>.** 




#### 2.3.2 Actual project CO<sub>2</sub> footprint

Due to a/o the use of biofuels, cycle optimisations and adjustments to the implementation method and load optimisations, the total  $CO_2$  emissions amount to 189.1 tonnes  $CO_{2e}$  for the project (within the reference period), which is 32.6 % lower than the reference  $CO_2$  footprint.



#### 2.3.3 Comparison of the emission profile organisation – project



#### 2.3.3.1 Project emission profile

The energy/emission profile of this project does not deviate from the profile at corporate level for the Dredging Department Benelux.

The main energy flows for this project are related to the emissions of 'wet' equipment, i.e. vessels.



## **3** Reduction

## 3.1 List of reduction measured for this project

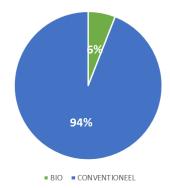
| ID     | Title                                               | Concrete optimisation                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0113-1 | Choice of<br>vessel                                 | In the tender phase, energy-efficiency of possible vessels to be deployed is taken into account. This is weighted against the mobilisation distance.                                                                                                                                                                                                                                                                                                       |
| 0113-2 | CSD: Judicious<br>use of engines                    | The CSD is powered by a diesel engine, which drives the dredge pump<br>directly, and an auxiliary generator. When the dredging process is<br>interrupted (interim unclogging of the pump, waiting for barges,),<br>the engine is switched off. Between dredging runs (waiting for barges)<br>and in bad weather, the CSD is possibly moored against the floating<br>infrastructure and is connected to the power supply on land (fuel<br>consumption = 0). |
| 0113-3 | FLAP (Floating<br>auxiliary Plant)<br>judicious use | When moored for stand-by, the engine is switched off as much as possible. Engines are not run unnecessarily e.g. for airco/heating.                                                                                                                                                                                                                                                                                                                        |
|        | of engines                                          | For transport, priority use is made of the work boat with the lowest emission and lowest consumption.                                                                                                                                                                                                                                                                                                                                                      |
| 0113-4 | Barges:<br>judicious use<br>of engines              | Between dredging runs (waiting for another split hopper barge being<br>loaded) and in bad weather, the SHB is moored as much as possible<br>against the sand quay or is anchored outside. When moored against<br>the loading pontoon, the engines are switched off: no unnecessary<br>use of propellers to remain in position.                                                                                                                             |
| 0113-5 | Optimisation<br>of work<br>planning                 | By planning the dredging works in the fairway just before cutter<br>works, the barges with a larger draught can sail to the dump site.<br>More sediments are therefore transported per cycle, whereby CO2<br>emissions per m <sup>3</sup> dredged sediments drop.                                                                                                                                                                                          |
| 0113-6 | Tidal<br>optimisation<br>of works                   | The sailing route to the sediment dump site at high tide is shorter<br>than at low tide. Trips to the sediment dump are therefore carried out<br>as much as possible at high tide, sand trips at low tide.                                                                                                                                                                                                                                                 |
| 0113-7 | Electrification                                     | Examine the possibility to have the barges run on electrical energy.                                                                                                                                                                                                                                                                                                                                                                                       |
| 0113-8 | Modernisation                                       | In 2022, the electrical and lighting system on DN122 was upgraded.<br>The solar panel capacity was doubled and connected to a battery<br>system (if required, it can also be charged via a silent generator). All<br>lighting converted to LED. The battery/PV capacity was shown to be<br>sufficient 99% of the time to power all deck and navigation lights.                                                                                             |

The full list of all reduction measures by Jan De Nul is published on the skao website: <u>https://www.skao.nl/gecertificeerde-organisaties/Jan\_de\_Nul\_N\_V</u>



## **3.2** Specific measures implemented

The above measures were implemented in this project as follows:


| ID               | Concrete implementation                                                                                                                                                                                                                                                                                                                                |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0113-1           | When selecting the vessels for this campaign year, we opted for a combination of traditional SBH and one TSHD as SHB.                                                                                                                                                                                                                                  |
| 0113-2<br>0113-3 | During the 2023 – 2024 campaign, only on-land power supply is used during stoppage periods (bad weather, tides).                                                                                                                                                                                                                                       |
|                  | As a result, the generator set on-board the support tug and CSD are not used for heating/aircon.                                                                                                                                                                                                                                                       |
|                  | The marinas are certified energy-neutral and supply 100% locally produced green energy.                                                                                                                                                                                                                                                                |
| 0113-4           | By deploying a TSHD as SHB, reaction times were short and high points in the fairway could be removed immediately. The SHB's could be used at any time during the campaign with maximum load.                                                                                                                                                          |
| 0113-5           | We opted for a combination of an SHB with a smaller hopper volume and smaller draught<br>and a TSHD/SHB with a larger hopper volume and larger draught. By optimising cycle<br>planning, whereby the small SHB sails out just before low tide, and the large TSHD/SBH<br>loads during low tide, stoppages due to tides could be reduced significantly. |
| 0113-6           | Accurate tidal forecasts are essential for proper cycle planning and production optimisation. The available models (British Admiralty - Total Tide, Survey predictions on the basis of harmonic constants) only have an accuracy of up to 0.5m and cause therefore uncertainty and loss of production.                                                 |
|                  | In cooperation with the "Scientific Department Control Unit of the North Sea Mathematical Model", their model was converted into forecasts for the works at Nieuwpoort. As a result, accuracy improved to 0.1m.                                                                                                                                        |
|                  | <ul> <li>Fewer stoppages and more productive work</li> </ul>                                                                                                                                                                                                                                                                                           |
| 0113 – 7         | The rudder propellors of the SHB were replaced with more efficient, newer models.                                                                                                                                                                                                                                                                      |

## **3.3** Other measures only applicable to this specific project

• Biofuel was used on this site, as well. Since the Year 3 campaign, the CSD uses FLAP fuel containing 7% bio.



Verhouding Bio/Conventionele brandstof



- Optimisation of the length of floating pipes to reduce the required engine power;
- Adjustment (reduction) of the sailing speed according to the optimal SHB cycle: not sailing unnecessarily fast and then having to wait for the other SHB to finish loading;

The reduction measures that are specific to this project for now are added to the umbrella list of measures for Jan De Nul. As a result, they are considered for all future projects (with award advantage).



## 4 Transparency

As regards communication about CO<sub>2</sub> performance for the Benelux as a whole, please refer to the umbrella communication plan << CO2PL-Jan De Nul-3C2 –Communication plan>>.

Specifically for this project, there is also internal and external communication about the  $CO_2$  performance. The form of communication, stakeholders, person responsible and frequencies are summarised in the tables below.

### 4.1 Internal

| Communication form         | Stakeholder                    | Person Responsible | Frequency                     |
|----------------------------|--------------------------------|--------------------|-------------------------------|
| Project induction          | Crew                           | Performer          | At the start of each campaign |
| Toolbox                    | Crew                           | Performer          | Monthly                       |
| Monthly report             | Project team werf              | Performer          | Monthly                       |
| BNL Project meeting        | Project team BNL               | Performer          | Biannually                    |
| Feedback in steering group | Steering group<br>BNL DREDGING | Project manager    | Monthly                       |

## 4.2 External

| Communication form                                                                   | Stakeholder               | Person<br>Responsible               | Frequency       |
|--------------------------------------------------------------------------------------|---------------------------|-------------------------------------|-----------------|
| Annual Project Report                                                                | Client                    | Project manager                     | Annually        |
| Publication of these project reports on the JDN website                              | Stakeholders<br>concerned | Energy & Emissions<br>QHSSE Advisor | Biannually*     |
| Posting using Banners & Heras<br>information boards on the<br>project in the marinas | Stakeholders<br>concerned | Performer                           | Continuously    |
| Social media: LinkedIn,<br>Instagram, facebook **                                    | Stakeholders<br>concerned | Department head                     | Approx. 2x/year |

\*Note: Biannual frequency is announced while there are activities to report. Should there be no activities during a semester, then there is no reporting either.